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Abstract
Recently, dense retrieval (DR) models, which represent
queries and documents with fixed-width vectors and retrieve
relevant ones via nearest neighbor search, have drawn in-
creasing attention from the IR community. However, previ-
ous studies have shown that the effectiveness of DR criti-
cally relies on sufficient training signals, which leads to se-
vere performance degradation when applied in out-of-domain
scenarios, where large-scale training data are usually un-
available. To solve this problem, existing studies adopt a
data-augmentation-plus-joint-training paradigm to construct
weak/pseudo supervisions on the target domain and com-
bine them with the large-scale human annotated data on the
source domain to train the DR models. However, they don’t
explicitly distinguish the data and the supervision signals in
the training process and simply assume that the DR mod-
els are mighty enough to capture and memorize different
domain knowledge and relevance matching patterns without
guidance, which, as shown in this paper, is not true. Based
on this observation, we propose a Robust Multi-Supervision
Combining strategy (RMSC) that decouples the domain and
supervision signals by explicitly telling the DR models how
the domain data and supervision signals are combined in the
training data with specially designed soft tokens. With the ex-
tra soft tokens to store the domain-specific and supervision-
specific knowledge, RMSC allows the DR models to conduct
retrieval based on human-like relevance matching patterns
and target-specific language distribution on the target domain
without human annotations. Extensive experiments on zero-
shot DR benchmarks show that RMSC significantly improves
the ranking performance on the target domain compared to
strong DR baselines and domain adaptation methods, while
being stable during training and can be combined with query
generation or second-stage pre-training.

1 Introduction
Dense Retrieval (Guo et al. 2021; Lin, Nogueira, and Yates
2021) has become increasingly popular in recent years and
has achieved the state-of-the-art ranking performance. It ef-
fectively leverages the pre-trained language models (Devlin
et al. 2018) to create dense representations for text, and rel-
evant documents can be efficiently retrieved by conduct-
ing nearest neighbor search with the encoded query vec-
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tor. Experimental results show that dense retrieval substan-
tially outperforms the traditional lexical retrieval methods
like BM25 (Robertson and Walker 1994).

Studies have shown that dense retrieval methods are often
data hungry and require large-scale annotated data in order
to achieve reliable performance (Gulrajani and Lopez-Paz
2021; Gururangan et al. 2020). In practice, however, obtain-
ing such large-scale training data are usually prohibitive due
to the high cost of data annotations. Without new annotated
data, existing dense retrieval methods can hardly adapt to
a target domain that is different from their original train-
ing corpus, which usually results in poor performance on
the target dataset. This is often refer to as the out-of-domain
(OOD) problem of dense retrieval. Therefore, how to con-
struct effective dense retrieval models on a specific target
domain without using annotated data, i.e., zero-shot dense
retrieval, has become an important question to the IR com-
munity (Thakur et al. 2021).

To tackle this problem, previous studies on zero-shot DR
and domain adaptation mostly adopt different training algo-
rithms with data augmentation techniques to improve the
performance of dense retrieval models in OOD scenarios.
Specifically, they first extract weak or pseudo supervision
data with data augmentation methods on the target domain,
and then train dense retrieval models with both the source
domain (which provides the original large-scale annotated
data for the dense retrieval model ) and the target domain
together. A variety of data augmentation methods and train-
ing algorithms have been explored, including unsupervised
Sequence Contrastive Learning (SCL) (Yu et al. 2022) and
Inverse Cloze Task (ICT) (Lee, Chang, and Toutanova 2019;
Izacard et al. 2021), which are mainly used for second-stage
pre-training, and query generation methods (Wang et al.
2022), which are combined with continuous fine-tuning or
knowledge distillation. Despite their differences in algo-
rithm design, most existing zero-shot DR methods assume
that, with proper training algorithms, dense retrieval mod-
els are mighty enough to model and memorize different
language distributions and relevance matching patterns. In
other words, there should be no need to explicitly distinguish
the data and supervision signals we feed into the dense re-
trieval model.

However, we consider that such assumptions usually lead
to two limitations in OOD scenarios. First, as existing stud-
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Figure 1: An illustration of previous methods and the proposed RMSC. Sub-figure (a) illustrates the pre-training and fine-tuning
process of previous pre-training-based methods. Sub-figure (b) demonstrates the source fine-tuning and target continuous fine-
tuning process of previous query generation methods. Sub-figure (c) presents the joint training process of RMSC.

ies do not explicitly tell DR models where the training data
came from, DR models tend to model the data from differ-
ent domains using shared parameters. When the DR mod-
els are not powerful enough, which is mostly true in prac-
tice, this means that the DR models are likely to focus on
the common characteristics between the source and target
domain data while ignoring the domain-specific knowledge
in the training data. It essentially limits the model’s abil-
ity to fit the target data, which is problematic when we care
about the retrieval performance on the target domain but
not the source domain. Second, in OOD scenarios, we have
imbalanced prior knowledge for relevance matching on the
source and target domain. Human annotated relevance data
is easily accessed on the source domain while only pseu-
do/weak supervision signals are available on the target do-
main. The goal of domain adaptation methods is to learn a
DR model that can predict relevance like human (i.e., pre-
dict the human annotated relevance) on the target domain,
but the human annotated relevance labels are only observed
on the source domain. As shown in Figure 1, previous pre-
training-based methods such as Contriever follow a training
paradigm that couples the source and target domains, while
distinguishing pseudo supervision signals and human anno-
tated data by dividing the training process into pre-training
and fine-tuning (Figure 1a). Without proper treatments, it’s
difficult to teach the DR model to capture the relevance pat-
terns expressed in the human labeled data without overfitting
the data patterns of the source domain. Different from pre-
training-based methods, QGen and GPL ignore the differ-
ences between pseudo supervision data and human labeled
data, and distinguish domains by first training on the source
labels, and then continuous learning or knowledge distilla-
tion on the target pseudo supervision data (Figure 1b). Sim-
ilarly, it’s difficult to teach the DR model to capture the data
patterns of the target domain without overfitting the rele-
vance patterns of pseudo supervision data. In the inference
process, the DR models are directly used on the target do-
main without knowing which data are feed and what types
of relevance it should looking for. Therefore, as shown in
this paper, dense retrieval models usually have unstable tar-
get domain performance during training and are highly sen-
sitive to the settings of training steps and early stop criteria.

In order to tackle those problems and develop reliable
training algorithms for zero-shot DR, we propose RMSC,
a Robust Multi-Supervision Combining strategy for dense
retrieval. Similar to existing studies, RMSC follows a data-
augmentation-plus-joint-training paradigm to train DR mod-
els on both the target domain weak/pseudo supervision data
and the source domain human labeled data. However, com-
pared to existing methods that implicitly or explicitly pre-
vent the DR models from distinguishing the source/target
domain and the human/pseudo relevance supervision data,
we design soft tokens to tell the DR models how the do-
main data and supervision signals are combined in the train-
ing data. As shown in Figure 1c, RMSC decouples domains
and supervision signals by explicitly telling the DR mod-
els about the current input data combination with soft to-
kens. In the inference process, we can simply feed the to-
kens representing ”the target domain” and ”human anno-
tated relevance” to guide the DR model to retrieve desired
documents. With the soft tokens to store the domain-specific
and relevance-specific knowledge, RMSC allows the joint
training of data from different domains and relevance types,
thus enabling DR models to focus more on general relevance
matching rather than overfitting the data patterns of a spe-
cific domain.

To verify the effectiveness of the proposed RMSC, we
conduct extensive experiments on publicly available zero-
shot DR benchmarks and compare RMSC against a wide
range of existing dense retrieval models and domain adap-
tation methods. Experimental results show that: 1) RMSC
significantly improves the retreival performance on the tar-
get domain. 2) RMSC is stable during training and can sub-
stantially outperform other dense retrieval methods without
sophisticated training strategies and negative mining tech-
niques. 3) RMSC is generic as it can adopt and combine any
data augmentation methods.

2 Related Works

In this section, we recap related work in dense retrieval and
domain adaptation.



Dense Retrieval
Dense retrieval models encode the query and the document
into dense vectors and use nearest neighbor search to re-
trieve documents. Earlier works focused on exploring train-
ing strategies for DR models, such as hard negative min-
ing techniques (Xiong et al. 2020; Zhan et al. 2021a,b)
and knowledge distillation from a strong cross-encoder (Qu
et al. 2020; Hofstätter et al. 2021; Lin, Yang, and Lin 2021).
Recent works investigate how to perform retrieval-oriented
second-stage pre-training on large language models (Gao
and Callan 2021a,b; Izacard et al. 2021; Liu and Shao 2022;
Li et al. 2023; Dong et al. 2023).

Zero-Shot Dense Retrieval
Thakur et al. (Thakur et al. 2021) collected the BEIR bench-
mark, which consists of diverse retrieval tasks from different
domains. They evaluated dense retrieval models and chal-
lenged the generalization ability of DR models. Many later
works follow this Zero-shot DR setting, where the DR model
is trained using a diverse and richly supervised retrieval
dataset and then evaluated on the out-of-domain search cor-
pus, which is usually accessible during training.

Domain Adaptation
Previous work on domain adaptation for IR can be roughly
divided into two categories. The first category mainly fo-
cuses on query generation techniques. These methods gen-
erate additional auxiliary training data on the target domain
with the help of a well-tuned generation model (Ma et al.
2021), or further employs a powerful cross-encoder to gener-
ate pseudo-labels for distillation (Wang et al. 2022). The sec-
ond category is retrieval-oriented pre-training. These meth-
ods employ pre-training tasks specially designed to improve
the retrieval performance of DR models. Condenser (Gao
and Callan 2021a) and coCondenser (Gao and Callan 2021b)
enhance the representation of [CLS] token and introduces
the Sequence Contrastive Learning (SCL) task for pre-
training. Contriever (Izacard et al. 2021) pre-train DR mod-
els on crawled large-scale web pages with Inverse Cloze
Task (ICT) and Independent cropping task. COCO-DR (Yu
et al. 2022) continues to use SCL on target domain for pre-
training and leverages implicit DRO during fine-tuning to
improve model robustness.

3 Problem Formulation
Dense Retrieval
Dense retrieval models encode the query and the document
into dense vectors and use nearest neighbor search to re-
trieve documents. With the development of large-scale pre-
trained language models such as BERT, advanced dense
retrieval models in recent years have followed the Trans-
former’s structure. More specifically, given a query q and
a document d, the text encoder f represents them as dense
vectors and use inner product to model relevance:

s(q, d) = ⟨f(q; θ), f(d; θ)⟩ (1)

Here, θ denotes the parameter of the text encoder.

Zero Shot DR
Different from in-domain Dense Retrieval, where a substan-
tial amount of supervised signals are available, zero-shot DR
designates a retrieval task in the absence of manually la-
beled relevance signals. In many practical scenarios where
search systems need to be built, it is costly to acquire a large
amount of manual annotations. For example, medical, legal,
and other specialized fields require relevant professionals to
complete the annotation, or in personalized scenarios, man-
ual annotation may involve user privacy issues. Therefore,
zero-shot DR challenges to construct an effective DR model
when the target domain lacks manually labeled relevance
signals.

In fact, not only the relevance annotation of query-
document pairs is unavailable in the target domain, but also
the query set is scarce in most cases. The only information
that can be easily accessed in large quantities is the docu-
ment collection of the target domain, namely the target cor-
pus. Therefore, we focus on how to build a retrieval system
with strong generalization performance where the target do-
main corpus is accessible and the supervised training signals
only come from the source domain.

Instablility of Target Performance
We first fine-tune dense retrieval models and observe the
out-of-domain performance during the training process. Pre-
vious work has shown that the mined hard negative sam-
ples significantly improve the retrieval performance of dense
retrieval models. Common negative sampling strategies in-
clude using top irrelevant documents from unsupervised
BM25 or mining from the previous episode of DR mod-
els(Xiong et al. 2020; Zhan et al. 2021a). However, for sim-
plicity and to avoid the impact of different negative sampling
strategies, the simplest random negative sampling method is
applied in this paper.

Following standard DR training process, we select three
representative DR models: Condenser, QGen, and COCO-
DR. We use the source domain human labeled data (MS-
MARCO) to fine-tune Condenser and COCO-DR, and use
the target domain generated pseudo data to continuous fine-
tune QGen. Figure 2 exhibits the performance of different
training steps on five BEIR datasets from different domains.
As for Condenser and COCO-DR, we can observe that dur-
ing the training process, the retrieval performance on MS-
MARCO (in-domain) keeps improving, while the perfor-
mance on BEIR (out-of-domain) starts oscillating and even
decreasing after the initial increase. We believe that the DR
models can learn general relevance matching patterns from
the supervised signals, which leads to the initial increase on
out-of-domain performance. However, the DR models will
inevitably overfit to the domain features and data patterns of
the source domain during the succeeding process of train-
ing, which causes the degradation of the out-of-domain per-
formance. As for QGen, we can see that the in-domain per-
formance keeps decreasing, since the DR models are fine-
tuned with target pseudo data. However, the out-of-domain
performance also oscillates, and we attribute this to the DR
models overfitting to the relevance patterns of pseudo super-
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Figure 2: The performance of Condenser, COCO-DR and QGen over different training steps on 5 of BEIR datasets. The blue
dotted line indicates the nDCG@10 on MSMARCO (in-domain) and the orange solid line indicates the performance on the
corresponding BEIR dataset. The x-axis in the third row is not aligned with the first two rows because QGen uses the target
domain generated pseudo data for continuous fine-tuning.

vision data, while the out-of-domain performance requires
human annotated relevance.

4 Proposed Method
In order to tackle the problems above and develop reliable
training algorithms for zero-shot DR, we propose RMSC,
a Robust Multi-Supervision Combining strategy for dense
retrieval. RMSC jointly trains weak supervision signals ex-
tracted from the target domain corpus and human labeled
data from the source domain, and constructs context-aware
vector representations with designed soft tokens. This sec-
tion describes the components of RMSC in detail.

Weak Supervision Extraction
In this paper, we consider weak supervision to be a technique
where training labels are obtained automatically without hu-
man annotators or any external resources (e.g., click data).
Many works have used unsupervised ranking models such as
BM25 to generate pseudo-labels for specific query sets and
document sets as weak supervision signals (Dehghani et al.
2017). However, since these methods require a given query
set, which is scarce under the zero-shot DR setting, we con-
sider using existing document-based unsupervised methods,
which have been widely explored in works on second-stage
pre-training for IR tasks, or query generation models to con-
struct training data when only corpus is available. Formally,
given a document di, we unsupervisedly extract weak super-
vision signals as:

q̂i, ˆdi+ = hq(di), hd(di) (2)

Here q̂ and d̂+ denote the query and the positive document
extracted. hq(·) and hd(·) denote the corresponding extrac-
tion method. Notice that we only extract positive documents
and not negative ones, since we follow the general format of
retrieval task annotations, where the supervision signals are
presented in the form of query and positive document pairs.

Specifically, we explored the following three extraction
methods:

Sequence Contrastive Learning (SCL) improves the
alignment and the uniformity of the text sequences embed-
ding space over the target search corpus in a query-agnostic
manner, which has been proved to be beneficial to in-domain
dense retrieval models. For each document, SCL splits it into
text spans and randomly extracts two spans to form a train-
ing pair.

Inverse Cloze Task (ICT) selects a sentence in the doc-
ument as a pseudo question, and its context is treated as
pseudo evidence, or the positive document. Given a pseudo-
question, ICT requires selecting the corresponding pseudo-
evidence out of the candidates in a batch.

Query Generation (QGen) generates relevant queries
for a certain document by employing a well-tuned genera-
tion model. The generated data are usually used directly to
further fine-tune a DR model for domain adaptation. Since
the generation model is not directly built based on the ac-
tual queries on the target domain, it can be considered as
weak/pseudo supervision on the target domain.



Soft Tokens and Context-aware Representation
After weak supervision extraction of the target corpus, we
can get the training set {q̂ti , d̂ti+}Ni=1, together with the su-
pervised signals of the source domain as {qsi , dsi+}Mi=1. With
the weak supervision training set, we can keep the target do-
main information continuously accessible to the DR model
during the training process with the source labels, thus alle-
viating the model’s potential overfitting to the source domain
features while improving the generalization ability specially
to the target domain.

However, we argue that it is sub-optimal to directly mix
the two training sets at the data level in a multi-task train-
ing manner. This is attributed to the existence of two gaps
in these two training sets. Firstly, these two sets of data
are from the source domain and the target domain respec-
tively, which differ in domain features such as term distri-
bution and language pattern. Secondly, the relevant query-
document pair of weak supervision is generated by the un-
supervised method, reflecting semantic text similarity, while
the source labels annotated by humans reflecting relevance
under real information needs, thus they could be different
in terms of relevance matching patterns. Direct joint train-
ing would require the DR model to process text inputs that
follow a mixed distribution and to model two related but not
identical training objectives simultaneously, which may con-
flict with each other and lead to ranking performance degra-
dation on the target domain.

To address such challenge, RMSC resorts to the special
token technique, which is widely used in the Transformer ar-
chitecture language models. Two special tokens, [CLS] and
[SEP], are first added to the beginning and end of a text
sequence input x = [x1, x2, ..., xl], which is then passed
through the Transformer backbone. The [CLS] representa-
tion from the last layer is considered to aggregate the infor-
mation of the entire text sequence, which directly serves as
the dense vector in the Transformer-based DR models:

v = f(x; θ) = Transformer([CLS, x,SEP]; θ) (3)

Specifically, RMSC introduces two sets of special soft to-
kens, namely, domain tokens and relevance tokens. The do-
main tokens enable the DR model to explicitly distinguish
text inputs from different domains, which substantially re-
duces the modeling difficulty and enables the DR models
to focus on the common characteristics between the source
and target domain data while keeping the domain-specific
knowledge by leveraging the soft tokens. The relevance to-
kens allow the model to tackle the two different training ob-
jectives in a uniform manner, which can avoid potential con-
flicts between weak supervision and human labeled data.

Formally, RMSC employs k independent domain tokens,
where k is set as a hyper-parameter, for source and target
domain respectively:

source domain : [S1], [S2], ..., [Sk] (4)
target domain : [T1], [T2], ..., [Tk] (5)

Similarly, k independent relevance tokens are utilized to
model weak supervision and human annotated labels respec-

tively:

weak supervision : [W1], [W2], ..., [Wk] (6)
human labels : [H1], [H2], ..., [Hk] (7)

RMSC then combines the text inputs with the special to-
kens, and thus construct context-aware representations:

vx = f([S1]...[Sk], x, [H1]...[Hk]; θ) (8)
vx̂ = f([T1]...[Tk], x̂; [W1]...[Wk]; θ) (9)

where x denotes text inputs from the source supervised train-
ing set, x ∈ {qsi , dsi+}Mi=1 and x̂ denotes text inputs from
the target weak supervision training set, x ∈ {q̂ti , d̂ti+}

Nt
i=1,

while θ is the parameter of the Transformer backbone.

Joint Training and Inference
In order to better mitigate the two gaps between the two
parts of data mentioned above, RMSC employs exactly the
same unsupervised method on the source domain to extract
weak supervision and constructs corresponding context-
aware representations as:

{q̂si , ˆdsi+}
Ns
i=1 = h(Ds) (10)

vx̂ = f([S1]...[Sk], x̂, [W1]...[Wk]; θ) (11)

where Ds = {dsi}
Ns
i=1 denotes the source corpus and Ns is

the number of documents in the corpus, while x̂ denotes
text inputs from the source weak supervision training set.
We thus obtain three sets of the training data, {qsi , dsi+}Mi=1,
{q̂si , ˆdsi+}

Ns
i=1, {q̂ti , d̂ti+}

Nt
i=1, which are source supervised

signals and the weak supervision extracted from the two
domains. Among these three sets of training data, the two
weak supervision sets differ only in the domain features,
since they are extracted by the same method. Meanwhile, the
source supervised signals and the source weak supervision
differ only in the relevance matching signals. By comparing
the former, we expect the DR model to learn the shared do-
main features into the backbone parameters, while storing
the information of the distinct parts into the embedding of
the corresponding domain tokens. By comparing the latter,
the DR model can integrate the general matching signals into
the backbone parameters and utilize the embedding of the
relevance tokens to represent the different relevance match-
ing signals. We can control the size of the weaker supervi-
sion set such that it is comparable to the size of the source
supervised signals. We then mix the three sets of training
data and treat them as a unified dataset.

During the training stage, we adopt random negative
sampling and in-batch negative techniques. We choose this
strategy mainly to rule out the potential influence of dif-
ferent training strategies and hard negative mining tech-
niques when comparing RMSC with other zero-shot DR al-
gorithms. Please note that other training and negative sam-
pling strategies are also applicable to RMSC and could po-
tentially lead to better experiment performance, but this is
not the focus of this paper. For each query-document pair
qi, di, we randomly select a different document dj , j ̸= i



from the corpus as the negative. Then we can optimize the
following ranking loss:

L(θ) =
B∑
i=1

S+
i

S+
i +

∑
ϕi=ϕj ,ξi=ξj

S−
ij

(12)

S+
i = exp (s(qi, di+; θ)) (13)

S−
ij = exp (s(qi, dj−; θ)) (14)

where B denotes the training batch size and s(q, d; θ) is the
context-aware score of query and document:

s(q, d; θ) = ⟨vq, vd⟩ (15)
= ⟨f(ϕ, q, ξ; θ), f(ϕ, d, ξ; θ)⟩ (16)

Here, ϕ and ξ denote the domain tokens and relevance to-
kens corresponding to the given query-document pair, re-
spectively. Notice that in the loss function, the in-batch neg-
atives is only calculated for samples with the same domain
and relevance matching patterns. Thus, RMSC can integrate
weak supervision and source labels by leveraging joint train-
ing.

During the inference stage, we set the domain tokens to
target domain tokens and the relevance tokens to human la-
bel tokens.

s̃(q, d; θ) = ⟨ṽq, ṽd⟩ (17)
ṽq = f([T1]...[Tk], q, [H1]...[Hk]; θ) (18)
ṽd = f([T1]...[Tk], d, [H1]...[Hk]; θ) (19)

In this way, RMSC can effectively combine the matching
signals learned from source labels with the domain fea-
tures learned from target weak supervision, thus achieving
a promising retrieval performance on the target corpus.

5 Experiment Setup
In this section, we present our experimental settings, includ-
ing datasets, baselines, and implementation details.

Dataset and Metrics
Following recent zero-shot DR research, we use the MS
MARCO Passage Ranking dataset (Nguyen et al. 2016) as
the source domain, with a corpus of 8.8M passages from
web pages and 0.5M training queries. Each training query
is coupled with a manually labeled positive passage, which
together constitute the source supervised signals.

As for the out-of-domain test sets, we select the BEIR
dataset (Thakur et al. 2021) and the Lotte benchmark (San-
thanam et al. 2021). BEIR is a heterogeneous evaluation
benchmark for information retrieval and contains 18 datasets
from diverse text retrieval tasks, from which we select pub-
licly available datasets to conduct experiments. The Lotte
benchmark consists of a collection of questions and answers
sourced from the StackExchange platform, which are then
divided into five distinct topics: writing, recreation, science,
technology, and lifestyle. In this benchmark, the relevance
of the answers is determined by their acceptance status or
upvote count on the original platform.

To measure the retrieval performance of DR models, we
use NDCG@10 as the evaluation metrics. We also report
Recall@100, Recall@1000 to reflect the retrieval capacity
over the entire search corpus.

Baselines
We consider various baselines, including standard sparse
and dense retrieval models. For sparse models, we select
BM25(Robertson and Walker 1994) as representative. For
dense models, we select representative dense retrieval mod-
els as baselines. Details can be seen in the Appendix.

6 Experiments
Now we empirically evaluate the proposed RMSC to address
the following three research questions:

• RQ1: Can RMSC substantially improve the retrieval per-
formance over DR models in the target domain?

• RQ2: Is RMSC stable during training and is RMSC scale
with other methods?

Main Results
This section compares our model with other baselines on
Lotte dataset to answer RQ1.

We initialize RMSC with Condenser and COCO-DR,
namely RMSC(CD) and RMSC(CO) respectively, and sum-
marize the retrieval performance of different baseline mod-
els in Table 1. Note that the pre-trained COCO-DR model is
fine-tuned with random negative sampling strategy for fair
comparison. According to the results, RMSC outperforms
all baseline models of BERT-base scale on the Lotte dataset,
which confirms the efficacy of the proposed RMSC method.

Compared to DR baselines such as DPR, ANCE, TAS-
B and Condenser, RMSC considerably improves the re-
trieval performance by a large margin, and on average boosts
14% and 20% over the best ANCE on NDCG@10 and Re-
call@1000, respectively. Notice that although ANCE and
TAS-B employ sophisticated training strategies such as self-
mined hard negatives and knowledge distillation, RMSC
still outperforms them with a simple random negative sam-
pling during training. Meanwhile, due to the relevance gap
discussed above, weak supervision, to a certain extent, can
be viewed as supervised signals with noise. This can also
explain that RMSC improves more on the coarse-grained
Recall metrics compared to NDCG@10, which requires the
fine-grained top ranking ability.

As for coCondenser and Contriever, which both utilize
unsupervised contrastive learning, their performance is dra-
matically enhanced compared to other DR models. Since
Contriever is pre-trained on a large amount of crawled web
pages with mixed domains, its generalization ability and
performance is slightly superior compared to coCondenser.
Nevertheless, RMSC improves 5.6% and 10% over Con-
triever on NDCG@10 and Recall@1000, which further il-
lustrates the benefit of introducing target domain-specific
weak supervision.

As for COCO-DR, similar to Contriever, it also uses unsu-
pervised contrastive learning, but directly on the target cor-
pus, thus its retrieval capability is marginally stronger. When
initialized with COCO-DR, RMSC can further improve the
retrieval performance and we attribute this to that the joint
training methodology can effectively mitigate the overfitting
problem. The improvement also indicates that RMSC can be



Datasets Metrics Sparse Dense Ours
BM25 DPR ANCE TAS-B Cond Contr. COCO RMSC(CD) RMSC(CO)

Lotte-Wri
N@10 0.352 0.357 0.388 0.346 0.373 0.424 0.422 0.466‡♮ 0.474‡♮

R@100 0.541 0.547 0.573 0.564 0.593 0.639 0.656 0.723‡♮ 0.732‡♮

R@1000 0.681 0.705 0.704 0.712 0.741 0.777 0.806 0.866‡♮ 0.871‡♮

Lotte-Life
N@10 0.305 0.385 0.423 0.406 0.384 0.459 0.427 0.463‡ 0.470‡♭

R@100 0.548 0.648 0.680 0.686 0.668 0.746 0.718 0.784‡♮ 0.794‡♮

R@1000 0.754 0.848 0.855 0.872 0.861 0.907 0.895 0.939‡♮ 0.946‡♮

Lotte-Rec
N@10 0.325 0.362 0.403 0.390 0.376 0.443 0.424 0.462‡♮ 0.475‡♮

R@100 0.570 0.598 0.629 0.651 0.629 0.709 0.689 0.764‡♮ 0.778‡♮

R@1000 0.736 0.770 0.775 0.811 0.801 0.857 0.849 0.903‡♮ 0.906‡♮

Lotte-Sci
N@10 0.156 0.131 0.149 0.133 0.123 0.158 0.159 0.157 0.176‡♮

R@100 0.303 0.249 0.282 0.281 0.252 0.304 0.326 0.346‡♮ 0.379‡♮

R@1000 0.498 0.418 0.453 0.463 0.427 0.497 0.556 0.578‡♮ 0.632‡♮

Lotte-Tech
N@10 0.151 0.155 0.188 0.167 0.157 0.199 0.205 0.220†♭ 0.234‡♮

R@100 0.335 0.318 0.367 0.360 0.345 0.415 0.445 0.491‡♮ 0.526‡♮

R@1000 0.539 0.524 0.576 0.595 0.567 0.660 0.708 0.753‡♮ 0.787‡♮

Avg
N@10 0.258 0.278 0.310 0.288 0.282 0.336 0.327 0.353‡♮ 0.366‡♮

R@100 0.459 0.472 0.506 0.508 0.497 0.562 0.566 0.621‡♮ 0.642‡♮

R@1000 0.641 0.653 0.672 0.690 0.679 0.739 0.762 0.807‡♮ 0.828‡♮

Table 1: Results of RMSC and different baseline models on the Lotte dataset. ♭/♮ and †/‡ indicates statistically significant results
over the strongest baselines Contriever and COCO-DR with p < 0.05/0.01, respectively. The best results are marked bold. The
second-best results are underlined.

combined with continues contrastive pre-training introduced
in COCO-DR.

We also conduct experiments on the BEIR benchmark.
The results can be found in the Appendix.
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Figure 3: Performance of RMSC(CD) and RMSC(CO) over
different training steps on 5 of BEIR datasets. The blue
dotted line indicates the nDCG@10 on MSMARCO (in-
domain) and the orange solid line indicates the performance
on the corresponding BEIR dataset.

In order to study the training robustness of RMSC, we plot
the performance of RMSC on MSMARCO and on BEIR
datasets during the training process. As we can see in Fig-
ure 3, on most datasets, the retrieval performance on MS-
MARCO (in-domain) keeps improving, while the perfor-
mance on BEIR (out-of-domain) maintains a steady upward
trend without the instability and fluctuation during direct
fine-tuning. We attribute this to that RMSC utilizes target
weak data and joint training methodology, thus alleviating

the overfitting to the source domain features during training,
which further validates the stability and robustness of the
proposed RMSC.

7 Conclusions and Future Work

In this paper, we propose RMSC, which combines mul-
tiple supervision signals for robust zero-shot dense re-
trieval. RMSC follows a data-augmentation-plus-joint-
training paradigm to train DR models, while decouples the
domain and supervision signals by explicitly telling the DR
models how the domain data and supervision signals are
combined in the training data with specially designed soft
tokens. With the soft tokens as extra memory, RMSC en-
ables the models to focus not only on common character-
istics, but also on domain-specific and supervision-specific
knowledge, instead of ignoring them. Meanwhile, the intro-
duction of joint training with target weak supervision largely
eliminates the problem of model overfitting during training.
Finally, at the inference stage, RMSC can guide the DR
models to retrieve desired documents on the target corpus
through employing corresponding soft tokens.

Experiment results show that RMSC can outperform other
dense retrieval methods and domain adaptation methods,
without employing sophisticated training strategies. How-
ever, we believe that these strategies, including hard neg-
ative mining, knowledge distillation and second-stage pre-
training, can also be combined with RMSC, which we leave
for future research.



Datasets Sparse Dense Ours
BM25 ANCE TAS-B GenQ GPL Cond. Contr. COCO RMSC(CD) RMSC(CO)

TREC-C 0.656 0.654 0.482 0.619 0.700 0.739 0.611 0.743 0.812‡ 0.772
HotpotQA 0.603 0.456 0.584 0.534 0.582 0.537 0.638 0.585 0.455 0.583

FiQA 0.236 0.295 0.300 0.308 0.344 0.256 0.329 0.304 0.317† 0.325‡
Touche 0.367 0.240 0.162 0.182 0.255 0.175 0.209 0.198 0.245‡ 0.252‡

NFCorpus 0.325 0.237 0.319 0.319 0.345 0.274 0.328 0.357 0.308 0.355
NQ 0.329 0.446 0.463 0.358 0.483 0.435 0.498 0.479 0.391 0.464

DBPedia 0.313 0.281 0.384 0.328 0.384 0.343 0.413 0.380 0.340 0.377
SciFact 0.575 0.507 0.640 0.644 0.674 0.583 0.678 0.734 0.649 0.742
SciDocs 0.158 0.122 0.148 0.143 0.169 0.141 0.163 0.161 0.186‡ 0.192‡
Quora 0.789 0.852 0.835 0.830 0.836 0.851 0.865 0.864 0.839 0.859
Fever 0.753 0.669 0.700 0.669 0.759 0.683 0.758 0.725 0.715 0.748

C-Fever 0.213 0.198 0.228 0.175 0.235 0.221 0.237 0.199 0.237† 0.214†
ArguAna 0.414 0.415 0.429 0.493 0.557 0.345 0.446 0.456 0.515‡ 0.564‡

Avg. 0.441 0.413 0.436 0.431 0.486 0.429 0.475 0.476 0.462 0.497†

Table 2: Comparison to DR baselines and domain adaptation methods on the BEIR dataset. We report NDCG@10 in the table.
†/‡ indicates statistically significant results over the strongest baseline COCO-DR with p < 0.05/0.01. The best results are
marked bold. The second-best results are underlined.

A Baselines
We consider various baselines, including standard sparse
and dense retrieval models. For sparse models, we select
BM25(Robertson and Walker 1994) as representative. For
dense models, we consider three types of baselines.
Dense retrieval methods: The models of this type are stan-
dard dual-encoder structures. ANCE (Xiong et al. 2020)
is trained using hard negatives retrieved from the previous
epoch. TAS-B (Hofstätter et al. 2021) employs knowledge
distillation to improve the retrieval performance. Although
it is not fair to compare ANCE and TAS-B with our method
since we don’t employ sophisticated training strategies, we
still report the results for reference.
Domain adaption methods: We also compare RMSC with
a variety of domain adaption methods. Contriever (Izac-
ard et al. 2021) pre-trains DR models on crawled large-
scale web pages with Inverse Cloze Task (ICT) and Inde-
pendent cropping task. Condenser (Gao and Callan 2021a)
enforces the [CLS] token to be the information bottleneck
to aggregate attention over the entire input texts during pre-
training. Thereby, the DR model can better capture the se-
mantic information using the representation of the [CLS] to-
ken. COCO-DR (Yu et al. 2022) continues to use Span Con-
trastive Learning (SCL) on target domain for pre-training
to alleviate the distribution shift, while employing implicit
DRO during fine-tuning to improve model robustness.
Query generation methods: QGen (Ma et al. 2021) uses
a T5-based query generation model, which is fine-tuned on
MS MARCO, to generate 5 queries for each document in the
target corpus as additional training data. A well-tuned DR
model is then fine-tuned on the generated data for domain
adaptation. Following QGen, GPL (Wang et al. 2022) first
generates queries for documents in the target corpus, and
then leverages an additional cross-encoder to score the gen-
erated query-document pairs as pseudo labels for efficient
denoising, which enables training with mined hard nega-
tives.

B Implementation Details
We build our models based on PyTorch Framework and
HuggingFace Library. Details can be found in the supple-
mentary materials. When implementing RMSC, the number
of special tokens k is set to 1, and each special token is ran-
domly initialized. For weak supervision extraction, we use
the NLTK library to divide a document into sentences. As
for the training settings of RMSC, we adopt random negative
sampling and select one negative document for each query.
The ICT method is used for the Lotte dataset and SCL for
the BEIR dataset. We use AdamW optimizer during train-
ing. The batch size is set to 512 and the learning rate is set to
1e-5. We use the same random negative sampling strategy to
fine-tune Condenser, coCondenser and COCO-DR for fair
comparison.

C Results on BEIR
We report the retrieval performance of different DR base-
lines and a variety of domain adaptation methods on BEIR
datasets in Table 2. It should be noted that the performance
of COCO-DR differs from that reported in the original pa-
per. This is due to that we utilized random negative sampling
during training instead of the iDRO and hard negative tech-
niques used in the original COCO-DR paper, which we be-
lieve is more fair and appropriate for our research objectives.
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