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Abstract. Dense retrieval models represent queries and documents with
one or multiple fixed-width vectors and retrieve relevant documents via
nearest neighbor search. Recently these models have shown improvement
in retrieval performance and have drawn increasing attention from the IR
community. Among a variety of dense retrieval models, the models that
employ multiple vectors to represent texts achieve the state-of-the-art
ranking performance. However, the multi-vector representation schema
imposes tremendous storage overhead compared with single-vector rep-
resentation, which may hinder its application in practical scenarios. We
therefore intend to apply vector compression methods such as Product
Quantization (PQ) to reduce the storage cost and improve retrieval effi-
ciency. However, the gap between the original embeddings and the quan-
tized vectors may degenerate retrieval performance. Recently, improved
dense retrieval models such as JPQ have been proposed to reduce stor-
age space while maintaining ranking effectiveness by jointly training the
encoder and PQ index. They have achieved promising improvement in
the single-vector dense retrieval scenario. We therefore try to introduce
this joint optimization framework to tackle the storage overhead of the
multi-vector models. The key idea is to Jointly optimize Multi-vector
representations with Product Quantization (JMPQ). JMPQ prevents ef-
fectiveness degeneration by leveraging a joint optimization framework
for the query encoding and index compressing processes. We evaluate
the performance of JMPQ on publicly available ad-hoc retrieval bench-
marks. Extensive experimental results show that JMPQ substantially
reduces the memory footprint while achieving ranking effectiveness on
par with or even better than its uncompressed counterpart.
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1 Introduction

Dense Retrieval[7, 13] has become increasingly popular in recent years and has
achieved the state-of-the-art ranking effectiveness. It effectively leverages the pre-
trained language models[4, 15, 20] to abstract the text and uses nearest neighbor
search for retrieval. Experimental results show that dense retrieval substantially
outperforms the traditional lexical retrieval methods like BM25[18].

Dense retrieval models can be classified into two categories, namely single-
vector representation models[22, 25, 14] and multi-vector representation mod-
els[12, 5, 16]. The single-vector models encode text to one dense vector, while
the multi-vector models utilize multiple vectors to represent the text. The multi-
vector models facilitate more fine-grained interactions compared with the single-
vector models and thus lead to better ranking effectiveness. One of the most pop-
ular multi-vector models is ColBERT[12], which utilizes token-level multi-vector
representations for queries and documents and establishes the state-of-the-art
ranking effectiveness. However, multi-vector models require multiple vectors for
each document, leading to a huge embedding index, which is usually tens of
times larger than that of the single-vector models. The large embedding index
questions its application ability in practical use.

To compress the embedding index of multi-vector models, we propose JMPQ,
which stands for Jointly optimizing Multi-vector representations with Product
Quanti-zation. JMPQ is inspired by JPQ[23], which is used to compress the em-
bedding index of single-vector dense retrieval models. However, the large number
of vectors in the multi-vector scenario brings more pressure on search efficiency,
and multi-vector models require a more detailed aggregation method compared
to single-vector models. Following JPQ, JMPQ utilizes PQ to compress the em-
bedding index of multi-vector models to reduce storage cost. It further employs
Inverted File System (IVF) to accelerate the search and introduces vector re-
construction for aggregation. JMPQ also leverages a joint optimization method
to prevent effectiveness degeneration caused by the PQ compression. During
training, JMPQ end-to-end retrieves top-ranked documents and computes rank-
ing loss based on the retrieval results. It then back-propagates the gradients to
the query encoder and PQ index. With PQ and the joint optimization strategy,
JMPQ can improve ranking effectiveness in an storage-efficient way.

To verify the effectiveness and efficiency of JMPQ, we base on ColBERT to
conduct extensive experiments on publicly available ad-hoc retrieval benchmarks
and compare JMPQ against a wide range of existing dense retrieval models and
compression methods. Experimental results show that: 1) JMPQ significantly
compresses the embedding index of multi-vector models (e.g. ColBERT) by over
10 times and still achieves comparable ranking effectiveness. 2) JMPQ substan-
tially outperforms other compression methods, including unsupervised methods
and supervised methods. 3) JMPQ substantially outperforms the competitive
single-vector dense retrieval baselines.
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2 Related Works

In this section, we recap related work in dense retrieval and index compression.

2.1 Dense Retrieval

Dense retrieval models encode the query and the document into dense vectors
and use nearest neighbor search to retrieve documents. Based on the number
of representations per text, dense retrieval models can be classified as single-
vector models, such as ANCE[22] and ADORE[25], and multi-vector models,
such as COIL[5], MEBERT[16], and ColBERT[12, 19]. The single-vector models
encode text to one dense vector and thus may result in a limited capacity to
abstract sufficient semantic information[16]. On the contrary, the multi-vector
models encode text to multiple dense vectors and are capable of modeling token-
level interactions. One of the most famous multi-vector retrieval models is Col-
BERT[12], which represents text with token-level embeddings. Given a query
q = q0q1...ql and a document d = d0d1...dn, ColBERT computes the token-level
term embeddings q and d:

q = {q0, q1, ..., ql} = Encoder(q0q1...ql) (1)

d = {d0,d1, ...,dn} = Encoder(d0d1...dn) (2)

During retrieval, ColBERT employs the MaxSim function to aggregate token-
level relevance scores as the document relevance scores:

s(q, d) :=
∑

i∈[|q|]

max
j∈[|d|]

qi · d
T
j (3)

Although multi-vector models perform better on ranking effectiveness, they also
increase the storage overhead by a large margin.

2.2 Index Compression

Vector compression methods have been widely applied. According to the training
process, they can be categorized as unsupervised and supervised methods.

Unsupervised Methods Popular unsupervised compression methods include
Product Quantization (PQ)[6, 10] and Locality Sensitive Hashing (LSH)[9]. There
are several variants of PQ, such as OPQ[6] and RQ[1]. OPQ adds a linear trans-
formation before quantization. RQ utilizes residual for compression. Most unsu-
pervised methods optimize the task-independent reconstruction error and thus
cannot benefit from the supervised signals.
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Supervised Methods Several studies have explored supervised methods for
compression. MoPQ[21] proposes a novel objective MCL and a sample augmen-
tation strategy DCS, which together can effectively contribute to the optimal
retrieval accuracy. JPQ[23] jointly trains the encoder and PQ index with hard
negative sampling, which is specifically designed for dense retrieval and directly
optimizes the ranking effectiveness. RepCONC[24] models quantization as a
constrained clustering process and further supports optimization of the dual-
encoders and the quantization index in an end-to-end manner.

JMPQ is inspired by JPQ, but has the following two main distinctions from
JPQ. Firstly, JMPQ introduces IVF to improve retrieval efficiency in the case
of huge number of vectors in the multi-vector scenario. Note that RepCONC
also utilizes IVF in the inference stage for efficiency, while JMPQ involves it
in both training and inference stages. Secondly, both JPQ and RepCONC di-
rectly rely on the PQ index to calculate the vector inner-product as the relevance
score. However, multi-vector models require a more detailed aggregation of the
inner product. Thus, JMPQ has an additional vector reconstruction process for
aggregation and re-ranking.

3 JMPQ Model

We propose JMPQ, Jointly optimize Multi-vector representations with Product
Quantization. In this section, we will outline the overall architecture of JMPQ,
describe the training strategy and analyze its efficiency.

3.1 Overall Architecture

Figure 1 illustrates the overall architecture of JMPQ. Following the procedure
of ColBERT, JMPQ pre-computes token-level document embeddings and builds
the IVFPQ index. It performs a two-stage retrieval. At the first stage, top-K
document term embeddings are retrieved by the compressed index. At the second
stage, JMPQ reconstructs the candidate document embeddings and then uses
the scoring function Eq. (3) for re-ranking.

3.2 The IVFPQ Index

The IVFPQ index supports compressed index storage and efficient retrieval. It
consists of the Inverted File System (IVF) and the Product Quantization (PQ).

Inverted File System JMPQ employs IVF to accelerate the search. IVF first
uses K-means[8] to generate P clusters and assigns each document embedding
to its nearest cluster. For a given query embedding, only the nearest n clusters
are searched. IVF stores the center embeddings of each cluster:

Ci ∈ RD(1 ≤ i ≤ P ) (4)
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Fig. 1: Overall Architecture of JMPQ. Token-level document term embeddings
are pre-computed offline for indexing. Given a query, JMPQ encodes it as mul-
tiple query term embeddings. The IVFPQ index performs efficient retrieval to
get top-K documents for each query term embedding. The irrelevant documents
are treated as hard negatives during training. At inference time, JMPQ uses the
MaxSim function to re-rank the retrieved documents.

JMPQ then uses PQ to quantize the residual of the document term embedding
to its cluster center. Let ρ(dj) denote the cluster dj is assigned to, the residual
embedding equals to:

rdj
= dj − Cρ(dj) (5)

Product Quantization PQ defines M sets of embeddings, each including K
embeddings of dimension D/M , where D denotes the embedding dimension:

ci,j ∈ R
D
M (1 ≤ i ≤ M, 1 ≤ j ≤ K) (6)

For a given residual embedding rdj
, PQ picks one centroid embedding from each

set and concatenates them as r†dj
:

rdj
→ r

†
dj

= c1,φ1(dj), c2,φ2(dj)..., cM,φM (dj) ∈ RD (7)
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where φi(dj) denotes the picked centroid embedding for the ith set.

IVFPQ Index Size We now analyze the storage compression ratio of the
IVFPQ index. IVF stores the Cluster Center Embeddings {Ci} and Cluster
Assignments {ρi(dj)}, which cost 8 bytes for a single vector. PQ stores the PQ
Centroid Embeddings {ci,j} and Index Assignments {φi(dj)}. As K is usually
less than 256, φi(dj) can be stored in one byte. A D dimension vector takes
M +8 bytes in total. As ColBERT uses 2-byte float to store its embeddings, the
compression ratio is 2D/(M + 8).

3.3 Joint Optimization

Queries

Documents

Query

Encoder

Document

Encoder

Query

Embeddings

Document
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IVFPQ Index
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Document

Embeddings

X
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Fig. 2: The training workflow of JMPQ

Figure 2 illustrates the training workflow of JMPQ. Firstly, JMPQ generates
the document term embeddings using the document encoder initialized with the
well-trained ColBERT and unsupervisely builds the IVFPQ index in the offline
stage. Secondly, JMPQ reconstructs the quantized term embeddings from the
IVFPQ index by:

d
†
j = c1,φ1(dj), c2,φ2(dj)..., cM,φM (dj) +Cρ(dj) (8)

Thirdly, the query term embeddings generated by the query encoder are
used to compute the relevance scores with the reconstructed document term
embeddings:

s(q,d†) :=
∑

i∈[|q|]

max
j∈[|d†|]

qi · d
†T
j (9)

Finally, the relevance scores are used to compute the ranking loss and then
update the query encoder and PQ centroid embeddings with gradient descent:
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loss = L(s(q,d†+), s(q,d†−)) (10)

Since the loss is computed based on the end-to-end retrieval results, the pa-
rameters are updated to directly improve the ranking effectiveness. Note that
document encoder is fixed during the training procedure for the following two
reasons. Firstly, JMPQ uses the reconstructed embeddings to compute the rel-
evance scores and the computation cost of the document encoder can be saved.
Secondly, such approach eliminates the need to rebuild the IVFPQ index after
each parameter update, thus enables JMPQ to utilize dynamic hard negatives[26]
for better ranking effectiveness.

4 Experiment Setup

In this section, we present our experimental settings, including datasets, base-
lines, and implementation details.

4.1 Dataset and Metrics

We conduct experiments with popular ad-hoc retrieval benchmarks from the
TREC 2019 Deep Learning Track and the TREC 2020 Deep Learning Track[17,
3, 2]. MS MARCO Passage Retrieval has a corpus of 8.8M passages, 0.5M train-
ing queries, 7k development queries (MARCO Passage), 43 test queries from
the TREC 2019 (DL2019), and 43 test queries from the TREC 2020 (DL2020).
We report MRR@10, Recall@100 for MARCO Passage, and nDCG@10, Re-
call@100 for both the TREC test sets. All the metrics are based on the full-corpus
retrieval results.

4.2 Baselines

We consider both the uncompressed and compressed retrieval models as our base-
lines. For uncompressed retrieval models, we compare our JMPQ with traditional
Bag-of-Words models such as BM25[18] and single-vector neural models such as
ANCE[22], ADORE[25], and TCT-ColBERT[14]. We also include ColBERT[12]
as the multi-vector retrieval model baseline. For the compressed retrieval models,
we select JPQ[23] and RepCONC[24] as single-vector supervised baselines. They
share the same model architecture and initialization. We include unsupervised
PQ[10] and PQ+RQ[19] as compression baselines for ColBERT. Notice that we
also report ColBERTv2[19] (which is further trained with hard negatives based
on v1) in our results.

4.3 Implementation Details

We build our models based on ColBERTv1[12] and Faiss ANNS Library[11]. The
embedding dimension is 128. When implementing JMPQ, K is set to 256, and M
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is set to 16. We train the unsupervised IVFPQ index as initialization with 30%
of the corpus embeddings. As for the training settings of JMPQ, we use AdamW
optimizer, batch, size of 32, and cross-entropy loss. For the query encoder, the
learning rate is set to 5e-6, and for PQ parameters, the learning rate is set to
1e-5. The number of clusters P is set to 32,768, and the multi-probing parameter
n is set to 32. At the first stage, the top 1,024 matches are retrieved for each
query term embedding. Considering the computation cost during training, we
do not re-rank the retrieved documents to get the top-irrelevant documents,
but we randomly sample 255 irrelevant documents from the candidates as hard
negatives. At inference time, we re-rank the candidates to get the top 1,000
documents.

5 Experiments

Now we empirically evaluate the proposed JMPQ and compare it with different
types of baselines. We summarize the ranking effectiveness, index size and query
latency in Table 1. Note that the multi-vector models are initialized with Col-
BERTv1[12]. We also report the performance of the multi-vector models initial-
ized with ColBERTv2[19] in Table 2. We next compare the overall performance
of JMPQ and baseline models, and then analyze the details from the following
three aspects.

5.1 Overall Comparison with Retrieval Models

Table 1: Overall Comparison with Retrieval Models on MARCO Passage,
DL2019 and DL2020. */** denotes the difference between JMPQ and the base-
lines at p < 0.05/0.01 level using the two-tailed pairwise t-test.

Model
Index MARCO DL2019 DL2020 Latency

GB M@10 R@100 N@10 R@100 N@10 R@100 ms

BM25[18] 0.59 0.187** 0.670** 0.497** 0.497** 0.488** 0.567** 60

ANCE[25] 25 0.330** 0.852** 0.645** 0.548** 0.646* 0.640** 7600
ADORE[25] 25 0.347* 0.876 0.683 0.582** 0.665 0.673* 7600
JPQ[23] 0.83 0.341** 0.868** 0.677 0.575** 0.671 0.670* 720
RepCONC[24] 0.47 0.340** 0.864** 0.668* 0.569** 0.666 0.640** 346

ColBERT[12] 147 0.361 0.873** 0.706 0.587** 0.676 0.683* 423
PQ+RQ[19] 23 0.360 0.866** 0.704 0.588** 0.681 0.669* 230
PQ[10] 14 0.344** 0.860** 0.684 0.564** 0.650** 0.656** 522
JMPQ 14 0.356 0.881 0.717 0.636 0.693 0.715 522

According to the results in Table 1, JMPQ achieves competitive ranking ef-
fectiveness compared with the uncompressed ColBERT[12] with a 10x smaller
index. Meanwhile, JMPQ significantly outperforms ColBERT on DL2019 and
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DL2020. As for the query latency, the encoding and re-ranking stages of Col-
BERT, PQ+RQ[19], PQ[10] and JMPQ are done with one GeForce 2080Ti GPU,
and the index searching stage is measured with one Intel Xeon E5-2630 V4 CPU
(single thread). JMPQ is slightly slower than the original ColBERT. The reason
is that JMPQ introduces extra time cost in the reconstruction process, while
ColBERT simply loads the embeddings from disk. We also notice that PQ+RQ
has a larger reduction in latency. We contribute this to its Index Inversion tech-
nique. Table 2 shows a similar result that the proposed JMPQ is able to achieve
comparable results with a compressed index. Note that the R@100 we report on
DL2019 are different from the results in JPQ paper because different thresholds
are used to calculate the metrics.

Table 2: Comparison with Multi-vector Retrieval Models with ColBERTv2 as
initialization. PQ+RQ denotes the compression method used in ColBERTv2

Model
Index MARCO DL2019 DL2020

GB M@10 R@100 N@10 R@100 N@10 R@100

ColBERT v2[19] 147 0.399 0.911 0.744 0.638 0.754 0.755
PQ+RQ (ColBERT v2) 23 0.396 0.907 0.747 0.643 0.750 0.761

PQ (ColBERT v2) 14 0.386 0.904 0.744 0.636 0.735 0.741
JMPQ (ColBERT v2) 14 0.390 0.911 0.752 0.646 0.742 0.748

5.2 Comparison with Multi-vector Retrieval Models

This section compares JMPQ with the uncompressed multi-vector retrieval mod-
els. Since the index compression process of JMPQ introduces information loss, it
is reasonable that its ranking effectiveness is inferior to the uncompressed Col-
BERT[12]. However, according to the results, the ranking effectiveness of JMPQ
is competitive with or even outperforms the uncompressed ColBERT, which in-
dicates that joint optimization can lead to significant effectiveness improvement
without extra supervised signals.

From Table 2, we can see that JMPQ has only marginal improvement com-
pared to the uncompressed ColBERTv2, which is less than the improvement
of ColBERTv1 in Table 1. We believe the primary reason is that ColBERTv2
introduces hard negative sampling during training, which is consistent with the
training strategy of JMPQ, and thus the improvement is not as large as expected.

5.3 Comparison with Other Compression Methods

This section compares JMPQ with other compression methods.
According to Table 1 and Table 2, the unsupervised PQ[10] severely hurts

the ranking effectiveness compared with the uncompressed ColBERT[12], while
JMPQ can significantly outperform the PQ baseline by leveraging a joint opti-
mization framework. Compared with PQ+RQ[19], which is similar to JMPQ and
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quantizes the residual embeddings with PQ and RQ, JMPQ still substantially
outperforms it with a relatively smaller index at most of the metrics for both
the ColBERTv1 and v2 initialization. It further demonstrates the benefits of the
supervised signals and the joint optimization framework.

As for the supervised compression methods, which also utilize joint optimiza-
tion, RepCONC[24] and JPQ[23] achieve notable ranking effectiveness among the
single-vector models while significantly reducing the index size. JMPQ outper-
forms them by a large margin. We attribute this to the powerful representation
capabilities of the multi-vector models over the single-vector ones. It is worth
noticing that the compressed index of single-vector models, such as 0.83G for
JPQ, is much smaller and is about 1/17 of the index size of JMPQ. This is
because, in the multi-vector scenario, the number of embedding vectors of the
corpus could be hundreds of times greater than the single-vector scenario. In our
experiments, the corpus has 8.8M embeddings for JPQ and RepCONC, while it
has over 590M embeddings for JMPQ, which is over 60x than the single-vector
models. Additionally, according to Section 3.2, a single vector takes an extra 8
bytes in the IVF for just storing the embedding ids, which in total occupies 4.7G
storage space.

5.4 Comparison with Single-vector Retrieval Models

We now compare JMPQ with competitive single-vector dense retrieval baselines.
According to the results, JMPQ substantially outperforms all the single-vector
baselines. Compared with ANCE[22], ADORE[25], and TCT-ColBERT[14], which
are uncompressed dense retrieval models, JMPQ achieves impressive effective-
ness improvement while the compressed index size is almost halved, as JMPQ
enables modeling token-level interactions with multi-vector representations.

6 Conclusions

This paper presents JMPQ based on JPQ. It jointly optimizes the encoding and
the compression processes in an end-to-end manner in the multi-vector repre-
sentation scenario. We conduct experiments on popular ad-hoc retrieval bench-
marks, where JMPQ achieves competitive or better ranking effectiveness than
the uncompressed dense retrieval models, with over 10x compression on index
size. JMPQ also substantially improves the ranking performance compared with
JPQ and RepCONC due to the strong representation capabilities of the multi-
vector models. The results demonstrate the effectiveness of JMPQ and highlight
that a compressed embedding index can benefit from supervised signals and be
effective in the first-stage retrieval. It is worth noticing that although we only
conduct experiments based on ColBERT and the MaxSim aggregation method,
we believe that JMPQ can be applied to any multi-vector models as well as to
any inner-product-based aggregation methods.
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